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The phase diagram: the ‘pseudogap’ regime. Systematics
of Tc.

There is fairly general agreement that the identifiable phase transitions partition the
phase diagram of a ‘typical’ cuprate as shown. (but note that there is no case known in
which the whole range of p is stable ! – the phase diagram shown is a composite.)

The height of the superconducting regime (i.e.

AF

N

SC

T

p 0.05 0.16 0.27

Tmax) varies a lot from material to material, but
its width in p is relatively constant and the max-
imum always seems to occur close to p = 0.16
(cf. below). A point to note is that one can often
start with a material with a reasonable value of
Tc (e.g. optimally doped YBCO, Tc ≈ 92K) and
by doping with in-plane Zn or Ni impurities, drive
Tc down and eventually to zero, thus eliminating
the ‘S’ phase in the diagram. Additionally, some cuprates even when undoped with Zn
appear to have no S region. (cf. below, part II).

In discussing more subtle aspects of the phase diagram, one should remember that it
is easy to vary the temperature at constant p, ie. to move up and down, but difficult to
vary p at constant T , i.e., move sideways: very few experiments have done the latter.∗ (In
some cases, such as YBa2Cu4O8, which is generally believed to be ‘naturally underdoped’
with p ≈ 0.12, the stoichiometry cannot be varied so we are stuck with a single value of
p from the start).

Let’s start with a couple of regions of the phase diagram where there is little contro-
versy. To the right of the max of Tc one has the so-called ‘overdoped’ regime: as we move
to the right, the properties appear to become closer and closer to those of a standard
textbook Fermi liquid, e.g. for Tl-2201 a log-log plot of ρab(T ) against T shows a slope
which varies from close to 1 for p = 0.16 to close to 2 for p ≈ 0.25. The Hall coefficient
also appears consistent with a Fermi surface containing (1+p) electrons, as does the
ARPES data. (see below). Moreover, the transition to the superconducting state at
this side of the diagram appears sharp and BCS-like, without any obvious precursors.
(Complication: LSCO Fermi surface appears to change from hole-like to electron-like
somewhere near x = 0.25).†

A second regime of the phase diagram which is generally believed to be well under-
stood is the AF phase which occurs at small p (p ≤ 0.04). We consider its form for p = 0.
In a single-plane material like La2CuO4, the system appears to be a simple AF Mott
insulator; recall we have 1 hole per CuO2 unit in the 3d shell, and this hole is believed
to be localized, approximately, on the Cu’s, and to order antiferromagnetically. Thus,
the crystallographic ab-plane reciprocal lattice (a simple square lattice with side 2π/a)

∗Loram et al., J. Phys. Chem. Sol. 59, 2091 (1998); Wuyts et al, Phys. Rev. B 53, 9418 (1996)
†Ino et al., J. Phys. Soc. Japan 68, 1496 (1999). A similar phenomenon occurs for BSCCO2212

and Bi2201: see Kaminski et al., PRB 73, 174511 (2006). However, this can be understood within a
“textbook” band-structure scheme.
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is accompanied by a magnetic superlattice, with extra points at (π/a, π/a), or in the
conventional notation (0.5, 0.5); in the AF phase we indeed get elastic spin-flip neutron
scattering at the wave vectors. In inelastic neutron scattering we can observe spin waves,
and from a study of their dispersion relation we infer that system is well-described by a
nearest-neighbor Heisenberg Hamiltonian, i.e.

Ĥ = J
∑
〈i,j〉

Si · Sj (1)

with an AF coupling constant which is approximately 1000K.
In the bilayer material‡ YBa2Cu3O6 the in-plane ordering seems to be the same

as in La2CuO4; moreover the two planes order ‘antiferromagnetically’ relative to one
another, i.e. the Cu spins sitting ‘opposite’ one another are oppositely oriented. One
then gets ‘acoustic’ and ‘optical’ spin waves, and from their spectrum one can deduce the
in-plane AF coupling constant J‖ (∼ 1000K) and the ‘interplane’ constant J⊥ (∼ 200K).
These values appear to be roughly consistent with the observed values of TN(p = 0) for
La2CuO4 (300K) and YBa2Cu3O6 (500K).

Now let’s turn to the controversial part of the phase diagram, namely the slice lying
to the right of the AF phase but to the left of the point of max Tc (p ≈ 0.16). This
region is variously called the ‘underdoped’, ‘pseudogap’ or ‘strange-metal’ region. There
are two major features of this region which are currently not well understood. First,
to the immediate right of the AF phase boundary (which is a genuine 2nd order phase
transition, marked by the appearance of AF LRO) there is a slice of the phase diagram
where the system appears to lack any identifiable LRO but nevertheless to be effectively
insulating (or at least so have a ρ � that of the optimally doped material just above
Tc ); for want of a better name this is sometimes called the ‘spin-glass’ regime (though
this may have misleading connotations). Although direct evidence is hard to come by,
it is often believed that the small portion of the p-axis at zero T between the vanishing
of antiferromagnetism at p ≈ 0.04 and the onset of superconductivity at p ≈ 0.05
corresponds to a perfect insulator. Since at sufficiently high T this ‘slice’ is reasonably
metallic with a ρ(T ) which increases with T , there has to be a crossover as a function of
temperature. This question has been investigated in detail for LSCO; one finds that for
any given p, the resistivity ρab(T ) has a minimum as a function of T , at a temperature
which varies linearly from about 200K for p ≈ 0.05 to Tc at p ≈ 0.15. By doping with
Zn, the superconductivity can be suppressed and the behavior of Tmin(p) followed down
to p ≈ 0.19 where it tends to zero. The transition from the anomalous metallic behavior
to an effectively insulating one thus does not appear to correspond to a phase transition,
but rather to a smooth crossover of the type by now familiar, e.g., in thin granular films.

A second major feature¶ of the underdoped regime, which may or may not be re-
lated to the above, is the appearance of a so-called ‘pseudogap’ below a characteristic

‡Because of the requirement in neutron scattering experiments for large samples, the AF phase has
been studied in detail only for LSCO and YBCO.
¶Refs: Timusk and Statt, Reps. Prog. Phys. 62, 61(1999). Tallon + Loram , Physica 349, 53 (2001).
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temperature T ∗(p) which rises to RT or above: Although the system does not display
superconducting long range order, it behaves as very much as if there were a gap in
the single-particle energy spectrum. The pseudogap was observed early on in the NMR
behavior, but is now known to manifest itself in just about all measurable properties
in the underdoped regime; it has become a major subject of experimental investigation
and theoretical speculation in the last few years. Its most direct manifestations are in
ARPES and tunneling, so I start with these.

ARPES (BSCCO series)

In the superconducting state of Bi-2212 at optimal doping, the rather diffuse N-state
ARPES spectrum develops a sharp peak which is well separated from the Fermi energy;
the separation is normally taken as a measure of the superconducting energy gap ∆(k̂))
(see lecture 8). The gap appears to have approximately the so-called dx2−y2 symmetry,
i.e., it is largest along the crystal axes and vanishes in the 45◦ (π/a, π/a) directions
(more details in lecture 7). This gap feature persists in the superconducting state in
the underdoped regime (p < 0.16), but in this case it appears to persist also above Tc;
the energy appears to be more or less independent of temperature∗∗ (at about 25meV
∼ 300K for p ∼ it increases slightly as p decreases), but the amplitude of the feature
gradually decreases and it vanishes somewhere around RT. It always appears to have
the dx2−y2 symmetry. No such feature is seen above Tc on the overdoped side. (More
details below)

A gap feature is also seen in Bi-2201 (Harris et at., PRL, 79, 143 (1997)) but it is
less spectacular and the magnitude of ∆ is down relative to that of Bi-2212 by a factor
3 (roughly the same as the ratio of the Tc’s) .

Tunneling

In underdoped Bi-2212, the superconducting
phase shows a DOS which is strongly attenuated
below a ‘gap’ which appears to be almost inde-
pendent of T . This gap persists above Tc but the
low energy region gradually gets filled in; the fea-
ture is still just visible at RT. See also Renner et al., PRL 80, 149 (1998); Matsuda et
al., Phys. Rev. B 60, 1377 (1999) [gap persists into overdoped regime].

∗∗Cf. TL. op. cit., p. 9: the ‘visual’ impression that the gap closes is misleading.
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NMR

As we have noted, in optimally doped YBCO, the 63Cu(2) NMR shift is constant above
Tc. In underdoped YBCO, it starts falling as T is lowered well above Tc (T ∼ 200K)
(and in fact Tc is hardly noticeable in the T -dependence). The same behavior is found
in 1248, where the temperature at which the decrease starts (≡ T ∗) is ∼ 300K.

The 89Y shift in 1248 also shows a change in behavior at ∼ 300K where it starts
to decrease more rapidly, actually changing sign at ∼ 160K. A similar T ∗ is found for
Hg-1223 (∼ 250K); in general, T ∗ as measured by Knight shift seems to be roughly the
same for single and multilayer materials.

The nuclear spin relaxation time: (63T1T )−1 increases slowly with decreasing temper-
ature, but starts to fall around T ∗ (it is not entirely clear that ‘T ∗’ is uniquely defined).

A rather puzzling feature is the effect of Zn substitution in the pseudogap regime: it
appears to suppress the turnover in (63T1T )−1 for concentration as low as 1%, but the
magnitude and temperature-dependence of the Knight-shift is completely unaffected,
and so are other measured properties (Cv, ρab). This is very significant, because the
superconducting transition is extremely sensitive to Zn substitution. (2% of Zn suppress
Tc by 30% in fully-oxygenated YBCO).

Specific heat∗

The specific heat Cv(x, T ) is conventionally written as γ(x, T )T , so that the ‘textbook’
behavior corresponds to γ =const. (i.e. independent of T ). This behavior is seen, inde-
pendent of doping at sufficiently high T , with a γ which is almost x-independent in the
overdoped regime but decreases with x in the underdoped regime. In optimally doped
and overdoped samples, γ remains independent of T down to Tc. On the underdoped
side, however, γ begins to fall off at a temperature ∼ 250K (∼ T ∗). Also, the jump at Tc
(in lecture 7) is much decreased, so that the entropy at high T is in fact rather similar
for samples of different x. A very important observation is that independently of x, the
ratio of S/T to the magnetic susceptibility χ(T ) inferred from the Knight shift is very
close to independent of T (i.e. the Wilson ratio, when expressed as S/χT , is constant).

Raman

As mentioned in lecture 5, at optimal doping the Raman spectrum is essentially feature-
less and polarization-independent. As we go towards underdoping (in YBCO) a very
broad peak emerges, in the B1g channel only, centered on a frequency which appears to
be independent of x and ∼ 500cm−1 (40meV).

(Magnetic) neutron scattering†

In neutron scattering from LSCO, and scattering in the ‘odd’ channel from YBCO,
the peak seen at low T in the optimally-doped case near (0.5, 0.5) sharpens up with

∗Ref: Loram et al., Physica C 235-240, 134 (1994).
†Ref: Mook et al., in SNS 97.
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underdoping and eventually demonstrably splits as a function of q, indicating ‘incom-
mensurability’. For YBCO 6.6− 6.7 it survives up to ∼ RT, well above Tc (see Mook et
al., Figs. 2,3). The question of the persistence of the so called 41meV peak seen in the
superconducting phase (lecture 8) into the pseudogap regime is at present controversial.

Transport properties

In 1248, the ab-phase dc resistivity ρab(T ) has a clear break in slope at ∼ 200K, dropping
much more sharply below that temperature. In YBCO for x < 0.08, the curve starts to
deviate from linear already at ∼ 400K, then has a minimum at ∼ 100K followed by an
upturn. Underdoped Hg-1223 shows similar behavior.

If one attempts to interpret the ab-plane ac conductivity in terms of a frequency-
dependent scattering rate τ−1(ω) and effective mass m∗(ω), then one finds that for
ω < 500cm−1, in 1248, the scattering rate decreases with temperature and the effective
mass rises by a factor 2 − 3 (so that for fixed ω � T the conductivity increases as T
drops). This is qualitatively similar to what happens in the superconducting phase, and
it is tempting to interpret it in terms of a decrease in scattering owing to the thinning
out of low energy electronic states by the pseudogap phenomenon.

The c-axis conductivity σc(ω) behaves oppositely (remember that it was essentially
featureless in the optimally doped material): For ω < 500cm−1 it decreases at low
frequencies, for T < T ∗.

Finally, a very interesting study of the ac conductivity at THz frequencies has been
carried out by Orenstein and collaborators, on underdoped BSCCO; they find that the
anomalous static EM response characteristic of the superconductiving state (Meissner
effect) persists in the dynamic response to temperatures well above Tc. (I hope to discuss
this further in lecture 11).

Discussion

Tallon + Loram argue convincingly that all the above data can be understood in terms
of a phenomenological picture with the following properties:

(1) The ‘pseudogap’ phenomenon is not associated with a phase transition but is a
crossover phenomenon.

(2) Associated with the phenomenon is a unique energy scale Eg(p), which varies from
∼ 1200K (∼ J‖) at p = 0 (i.e. for the AF insulator) down to ∼ 180K at p = 0.15 (see
TL. Fig. 11) This energy scale is directly reflected in the frequency-dependence of
physical quantities (recall 1K≈0.66cm−1, so a characteristic frequency of 500cm−1

corresponds to 750K). By contrast, the characteristic temperature T ∗ at which
crossover occur is of the order of 0.4Eg(p) rather than Eg(p) itself (because of the
general form of the Fermi and Bose functions).

(3) The crossover temperature T ∗(p) does not join smoothly on to the curve Tc(p) near
p ≈ 0.16, as is often asserted, but rather cuts straight through the curve of Tc(p).
Eg(p) and hence T ∗(p) go to zero abruptly at p = 0.19.
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(4) It follows from (3) that the pseudogap phenomenon has nothing directly to do with
superconductivity.

[This conclusion is certainly likely to be controversial!]

Other recent experiments on the pseudogap regime:

(1) Nernst effect

(2) evidence for ‘nematic’ behavior

(3) dHvA-type experiments.

Fermiology of the pseudogap regime

In the last five years or so, a question which has become increasingly urgent and perplex-
ing is that of the shape and nature of the Fermi surface in the underdoped (or pseudogap)
regime. The two experimental techniques which are generally believed to be most infor-
mative in this respect are ARPES (which essentially measures the quasiparticle energy
spectrum and the discontinuity in the occupation number n(k) ≡

〈
a+k ak

〉
as we cross the

Fermi surface) and quantum-oscillation experiments (hereafter referred to generically as
dHvA, although in reality most of the experiments actually conducted are technically
Shubnikov-de Haas), which measure the area of the Fermi surface(s), and in principle,
the effective mass on it. Unfortunately, in the case of the cuprates the inferences most
naturally drawn from those two classes of experiment appear prima facie to be mutually
inconsistent.

Let’s start with the ARPES data∗. If we consider the normal state in the pseudogap
regime just above Tc, the ARPES spectrum looks essentially indistinguishable from its
form in the superconducting state (see l. 8); i.e. there are relatively sharp quasiparticle-
like peaks in the spectral density A(k, ε) which are “pulled back” from the Fermi energy
εF by a gap ∆ which appears to be roughly proportional to | cos 2θ| where θ is the angle
with a crystal axis, i.e. roughly of the so-called dx2−y2 form; note that ∆ is zero at
(but only at!) the 45◦ directions. If now we raise the temperature, a set of so-called
“Fermi arcs” appears around these nodal points: that is, the “pseudogap”∆ appears to
become zero over a finite range of angles around the original nodes, the extent of this
range increasing with temperature, until by around a temperature T ∗ (which increases
strongly with underdoping) it is zero over the whole surface. Thus, a “Fermi surface”
in the sense seen in a normal textbook metal appears to exist for certain directions
of k (the “arcs”) but not for others. However, the behavior in the regions in which a
“Fermi surface” does not exist (“gapped” regions) appears to be similar to that in the
superconducting state, indicating prima facie that while there is some rearrangement
of the states (due perhaps to pairing, or something else) over a region of ∼ ∆ close to
the original Fermi energy, the bulk of the Fermi sea is unaffected. What needs to be
particularly emphasized in the present context is that the ARPES data (or at least those

∗Kanigel et al., Nature Phys. 2, 497 (2006)
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currently obtained) appear to be entirely consistent with a smooth evolution of the Fermi
surface (or more accurately the Fermi sea) as a function of p between the overdoped and
underdoped (pseudogap) regimes; in particular, they are entirely consistent with a Fermi
sea containing (1+p) holes per CuO2 unit.

Now let’s turn to the dHvA-type (quantum oscillation) experiments. To assess their
significance we need a little theory; fortunately, this is considerable simpler in the quasi-
2D case likely to be relevant to the cuprates. A somewhat simplified version of the
standard Onsager-Lifshitz-Kosevich (textbook) theory goes as follows: Consider first a
simple Bloch model of a 2D metal (i.e. with nontrivial band band structure ε(k) but no
interactions). In a magnetic field B perpendicular to the 2D plane, the quasiclassical
equation of motion of a single-electron is

~
dk

dt
= F = evk ×B (2)

where vk ≡ ~−1∂ε(k)/∂k is the electron velocity. Thus the electron moves along a curve
of constant energy. Assuming for the moment that the orbit in question is closed and
that we can neglect scattering, the period is given by the formula

T ≡
∮
dt =

∮
dk‖

dk‖/dt
=

~2

e

∮
dk‖

(dε/dk⊥) ·B
=

~2

eB

∮
dk‖

dk⊥
dε
≡ ~2

eB

(
dS

dε

)
(3)

where S(ε) is the area in k-space enclosed by a contour of energy ε; note that T is in
general a function of ε∗.

Now in quantum mechanics, at the level of the cor-

 

dk⊥ 

dk|| 

respondence principle, the motion corresponding to a
classical closed orbit is quantized, with the allowed en-
ergies separated by h/T (ε) where T is the classical pe-
riod; in particular, in a magnetic field the original con-
tinuous energy spectrum ε(k) “condenses” on to a set
of discrete levels separated by h/T (ε) ≡ ~ωc(ε).

The point, now, which is generic to all experiments
of the dHvA type is that one would expect the physical
behavior of the system to repeat itself every time one
of the quantized levels passes through the chemical po-
tential µ (which generally speaking will be controlled
by the leads to the system, and thus can be treated as
fixed). This requires the condition, for some integer n,

n∑
j=1

~ωc(j)

(
∂S

∂ε

)
(j) = S (4)

where S is the area of the Fermi surface corresponding to µ. However, inserting eqn. (3).

∗An exception is the Sommerfeld (free-electron) limit, where we easily check that T = 2π/ωc with ωc

the free-electron cyclotron frequency eB/m.
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we find that this is equivalent to the simple condition†

n
eB

h
= S (5)

or equivalently
B−1n = ne/hS (6)

i.e. the behavior of (e.g.) the resistivity should be periodic in B−1 with period (e/hS).
Thus, the periodicity in B−1 is a direct measure of the area of the Fermi surface.

This argument certainly seems foolproof for the simple Bloch model, and arguments
have been given in the literature that it should still work for a simple Landau Fermi-
liquid generalization of that model. However, it is not entirely obvious that it still works
even for a Fermi liquid in the presence of umklapp processes, let alone for a non-Fermi
liquid state (where since the Fermi surface is in general not defined, one would assume
prima facie that there should be no well-defined periodicity).

Turning to the dHvA experiments of the last few years∗, we find that in the over-
doped regime of Tl-2201 (p∼= 0.25) they show a single well-defined periodicity of 18 kT,
corresponding to a“large” Fermi surface (occupation 1+p); this agrees well with other
experiments in this regime. However, for underdoped YBCO (p = 0.1) there is, again, a
single periodicity, but now it is 0.54-kT, 30 times smaller! If we interpret this result in
the standard way, this means that any Fermi surface(s) which occur in the pseudogap
regime must be ∼ 30 times smaller than that in the overdoped regime. With 4 such
“pockets” we could accommodate approximately p (not 1+p!) holes.

At the time of this writing the apparent inconsistency of the ARPES and dHvA
results is an unresolved puzzle. A further and somewhat related puzzle concerns the
question of whether one or more symmetries (time reversal, tetragonal. . .) is broken in
the pseudogap phase; I return to this question later in the course.

Systematics of Tc

The most important determinant of Tc in the cuprate superconductors is almost certainly
the doping level x (or δ). When Tc is expressed directly in terms of the departure from
stoichiometry, the picture looks rather confusing. However, as we saw in lecture 4, it is
more natural to express it in terms of p, the number of free carriers in the CuO2 planes
per CuO2 unit, i.e. the number of 3d holes per CuO2 unit over and above the 1 present
in the ‘parent’ compound (which, of course, need not actually exist in chemically stable
form for the particular compound in question). In some cases (e.g., La2−xSrxCuO4) it
is almost certain that p is simply equal to x, in other cases (e.g., YBa2Cu3O6+x) some
guesswork is needed, but it seems there is always a consistent choice of p which, at
least over a certain range, is proportional to x with a chemically sensible constant of

†Note that this condition is in some sense “dual” to that for the integral quantum Hall effect: the
(k-space) Fermi sea should contain an integral number of inverse flux quanta! The exact result actually
has n→ n+ γ where γ is an (a priori unknown) offset, but this does not affect the argument.
∗For a concise review, see L. Taillefer, J. Phys.: Cond Matt. 21, 164212 (2009)
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proportionality. When this is done, it is widely believed that the formula for the shape
of the Tc(p) curve is universal and well approximated by the parabolic formula (Presland
et al., Physica C 165, 391 (1991)):

Tc(p) = Tmax
c (1− 86(p− 0.16)2) (7)

thus Tc has a maximum at p = 0.16 and tends to zero at p ≈ 0.05 on the underdoped
side and at p ≈ 0.27 on the overdoped side. The fact that this equation seems to fit the
data reasonably well irrespective of the actual scale Tmax

c is quite surprising.
Given the (approximate) validity of the above formula, the question reduces to what

determines Tmax
c . One obvious relevant variable is sample purity, particularly as regards

impurities in the CuO2 planes themselves. One much-studied substitution is that of
other transition metals‡ (Zn, Ni, Co . . . ) for the Cu(2)’s. Such substitutions always
depress Tc dramatically§ (a 2% Zn substitution in YBCO7 already depresses Tc by ∼
30%). Although substitution (of Zn or Ni ) changes p, it seems very unlikely that this
is the main effect,‖ and it is usually understood in terms of ‘pair-breaking’ due to the
disorder introduced in the potential seen by the mobile holes.

Substitution of off-plane atoms has much less effect, at least so long as it does not
change p (‘isovalent’ substitution). A particularly striking example is the substitution
of RE elements for Y in YBCO7: not only does 100% substitution change Tc negligibly
(sometimes raising it by ∼ 1 − 2K), but even ‘mixed’ compounds of the form (e.g.)
Y1−xErx also have essentially the same Tc. Thus, it seems that even though the radii of
the various RE’s vary by ∼ 15%, this does not introduce any important disorder into the
CuO2 planes themselves. On the other hand, substitution of Ca by Sr or Ba sometimes
has dramatic effects (see below).

Oddly enough, the situation seems a bit different when one introduces disorder in the
atoms adjacent to the plane (i.e., in the ‘spacing’ rather than the ‘intercalant’ position).
Attfield and co-workers∗ carried out an interesting study on LSCO-type compounds in
which they substituted La with Nd, Ca, Sr, or Ba in such a way (i.e. (La, Nd)2−x(Ca, Sr,
Ba)xCuO4 when x = 0.15) that the hole concentration p (as calculated from standard va-
lence rules) remains fixed while the degree of ‘structural’ disorder, quantified by the mean
square dispersion σ2 = 〈r2A〉 − 〈rA〉2, of the cation (La-site) atoms, can be varied. They
found a quite severe depression of Tc by the structural disorder, ∂Tc/∂σ

2 ≈ 7000K/Å2;
they suggest that this may be due to trapping of a fraction of the in-plane holes by
the structural disorder. If this is right, the effect could presumably be compensated by
slightly overdoping the sample (McAllister et al. always worked at optimal doping, so
could not determine this).

It is possible that there is a connection between these results and the effect of plane

‡Ni was formerly thought to be an exception in this rule, but more recent studies conclude that its
effects are similar to those of Zn.
§See e.g. Markert et al., in G I, fig. 28.
‖If this were true, then (e.g.) substitution of Zn in underdoped YBCO should increase Tc, contrary

to experiment.
∗Mcallister et al., PRL 83, 3289 (1999).
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buckling on Tc; there is a fair amount of evidence† that at constant p, Tc decreases
with buckling angle,‡ though the effect is not large (about 2K/degree in a LSCO-type
material, see Fig. 3 of Dabrowski et al). One may speculate that the Tc of YBCO might
be comparable to that of 2-layer or even 3-layer HgBCO were it possible to avoid the
severe (∼ 15◦) buckling that actually characterizes it.

One more variable which has a substantial effect on Tc is pressure, either hydrostatic
or uniaxial. A particular striking example is Hg-1201, where Tc can be varied from a
value of ∼ 100K at ambient pressure to 120K at 20GPa (after which it gradually declines
again). It is often believed that the increase is a result of the shortening of the Cu-apical
O bond length, which is the structural feature most sensitive to pressure.

Undoubtedly the most intriguing variable in the context of the systematics of Tc is
the layer multiplicity n in homologous series. In the Bi, Tl and Hg series the n = 2
members always have a Tc higher than the n = 1 one, and the n = 3 members a higher
temperature still. In fact, a number of papers in the literature have attempted to fit
Tc(n) to a formula which is predicted by at least three different scenarios, namely

Tc(n) = Tc(1) + const (1− 1/n) (8)

However, it should be emphasized that there is no evidence at all that this formula works
for n > 4. The situation is complicated, because it often turns out that systems with
the nominal composition corresponding to a given n are not in fact single-phase; but
where one can be sure that the structure really is (Ca)n−1(CuO2)nX, all the evidence is
that the Tc of the n = 4 and higher compounds is actually less than that of the n = 3
member, in other words, that three CuO2 planes are ‘optimal’. (Cf. in particular the
2-Tl series, in Shaked et al.). It is still possible to ask whether the single relation which
can be inferred from the above equation applied up to n = 3, namely

Tc(3)− Tc(2)

Tc(2)− Tc(1)
=

1

3
(9)

holds? I believe it does, at least for the 2-Tl and Hg series (AJL, PRL 85, 3984 (2000)).§

An even more intriguing observation is that the statement that Tc is higher for the
n = 2 and 3 members of a homologous series than the n = 1 member is true only when
the intercalant A is Ca. Indeed, until very recently there was no known case of any bi-
(or tri-) layer cuprate intercalated entirely with Sr or Ba which is superconducting at any
temperature! A particularly striking exhibit in this connection¶ is the bilayer homologues
of LSCO: the pure Ca-intercalated material, La2−xSrxCaCu2O6, is a superconductor
with a Tc of 58 K, decently higher than that of the single-layer material in accordance
with the general rule. However, as the Ca is progressively substituted with Sr, Tc falls,
and tends to zero at an (in-plane) Sr concentration of around 80%. This behavior is at

†DDabrowskiet al., PRL 76, 1348 (1996).
‡Where p is itself varied the situation is more complicated (Chmaissem et al., Nature 347,45 (1999)).
§It may hold also for the 1-Tl and Bi series where Tc(1) is much lower, but if so I believe this is

probably a coincidence with no great significance.
¶H. Shaked et al., PRB 48, 12941 (1993).
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first sight quite puzzling, as Sr is isovalent to Ca and not that different in atomic size
(1.26Å vs 1.12Å). However, Shaked et al. found that this small difference is sufficient to
push the planes far enough apart to permit ‘intruder’ oxygens to occupy the so-called
O(3) sites between the CuO2 planes, and they were able to correlate the decrease of
Tc with the occupancy of this site (see their Fig. 11(a)); it appears that an occupancy
∼ 10% is enough to destroy superconductivity altogether. The reason for this is at
present unclear.

[Recent work on Sr-intercalated BSCCO (di Luccio et al.)]

Effect of high magnetic fields on the phase diagram

A very interesting series of experiments∗ has been conducted by the Taillefer group, in
which high (∼ 30T ) magnetic fields were applied and the superconducting transition
detected by the sharp change in the thermal conduction (in type-II superconductors this
is primarily due not to the decrease in the density of quasiparticles but to their increased
scattering by vortices). The results obtained on YBCO are dramatic:

This pattern of a double superconducti-
ing dome is actually found as a function e.g.
of pressure in several other (non-cuprate) sys-
tems, and clearly raises the question of whether
the mechanism, or even the symmetry of the
OP, is the same in the two domes – so far,
competely unknown!

∗Grissonnanche et al., Nature Communications 5, 3280 (2014)


